Caspase-cleaved TAR DNA-binding protein-43 in Pick's disease.
نویسندگان
چکیده
The hyperphosphorylation and proteolytic modification of the TAR DNA binding protein-43 (TDP-43) is a key finding in a number of neurodegenerative diseases including frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U), amyotrophic lateral sclerosis (ALS), and most recently Alzheimer's disease (AD). To examine whether proteolytic modifications of TDP-43 is a relevant finding in Pick's disease, we utilized a novel site-directed caspase-cleavage antibody based upon a known caspase-3 cleavage consensus site within TDP-43 at position 219. Application of this antibody, termed TDP caspase-cleavage product (TDPccp) to postmortem Pick's disease brain sections revealed the presence of caspase-cleaved TDP-43 in Pick and Hirano bodies predominantly within region CA1 of the hippocampus. Co-localization of TDPccp with PHF-1, a general marker for Pick bodies, as well as with an antibody to caspase-cleaved tau (TauC3) was evident within the hippocampus. A semi-quantitative analysis indicated that approximately 21% and 79% of the Pick bodies identified in area CA1 contained caspase-cleaved TDP-43 or caspase-cleaved tau, respectively. Of interest was the lack of co-localization of TDPccp with PHF-1 in Pick bodies within the dentate gyrus. Collectively, these data have identified modified TDP-43 as a component of Pick and Hirano bodies that is restricted to area CA1 in Pick's disease. The relative paucity of caspase-cleaved TDP-43 found within Pick bodies in comparison to caspase-cleaved tau suggests that TDP-43 and its modification by caspases is most likely not a contributing factor leading to Pick body formation.
منابع مشابه
Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer's disease.
The TAR DNA-binding protein-43 (TDP-43) has been identified as a major constituent of inclusions found in frontotemporal dementia with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). To determine a possible role for TDP-43 in Alzheimer's disease (AD), a site-directed caspase-cleavage antibody to TDP-43 based upon a known caspase-3 cleavage consensus site within T...
متن کاملCaspase-Cleaved TAR DNA-Binding Protein-43 in Parkinson’s Disease and Dementia with Lewy Bodies
Background: TAR DNA-binding protein-43 (TDP-43) proteinopathies are classified based upon the extent of modified TDP-43 and include a growing number of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin immunoreactive, tau-negative inclusions (FTLD-U) and FTLD with motor neuron disease (FTLD-MND). Objective: The purpose of th...
متن کاملTruncation of the TAR DNA-binding protein 43 is not a prerequisite for cytoplasmic relocalization, and is suppressed by caspase inhibition and by introduction of the A90V sequence variant
The RNA-binding and -processing protein TAR DNA-binding protein 43 (TDP-43) is heavily linked to the underlying causes and pathology of neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In these diseases, TDP-43 is mislocalized, hyperphosphorylated, ubiquitinated, aggregated and cleaved. The importance of TDP-43 cleavage in the disease patho...
متن کاملProgranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43.
TAR DNA binding protein-43 (TDP-43) is the pathologic substrate of neuronal and glial inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTDL-U) and in amyotrophic lateral sclerosis (ALS). Mutations in the progranulin gene (PGRN) have been shown to cause familial FTLD-U. The relationship between progranulin and TDP-43 and their respective roles in neurodegenerat...
متن کاملNeurotoxic 43-kDa TAR DNA-binding Protein (TDP-43) Triggers Mitochondrion-dependent Programmed Cell Death in Yeast*
Pathological neuronal inclusions of the 43-kDa TAR DNA-binding protein (TDP-43) are implicated in dementia and motor neuron disorders; however, the molecular mechanisms of the underlying cell loss remain poorly understood. Here we used a yeast model to elucidate cell death mechanisms upon expression of human TDP-43. TDP-43-expressing cells displayed markedly increased markers of oxidative stres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of physiology, pathophysiology and pharmacology
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2009